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I. INTRODUCTION 

The problem of radiative heat t ransfer  to the surface of a space 

vehicle during the entry into a planetary atmosphere gained in importance 

with the establishment of national programs for lunar exploration and missions 

to the near planets. 

be higher than the ear th  orbital speed and may reach  levels as high as 

50, 000 f t /sec.  

blunt entry vehicle behind the detached bow shock wave will reach high 

p res su re  and temperature  levels. 

amounts of radiant energy characterist ic of the chemical species present 

in  the flow. 

ear th  re-entry on which l ines of constant stagnation density, temperature  

and ion mole fraction ( a s s u m i n g  equilibrium thermochemistry) a r e  drawn. 

Two typical trajectories,  one fo r  re-entry after a lunar mission and a 

second for  re-entry f rom a flight to the planet Mars ,  a r e  a lso shown. 

Stagnation temperatures  of more than 11,000 K for the former  and more  

than 14,000 K for  the la t ter  will be observed. 

will of course produce more  severe stagnation conditions. 

The entry velocities for some of these missions will 

At these velocities the flow in the stagnation region of a 

Such gas  can be expected to emit large 

As an example we show in F ig .  1 an  altitude-velocity map for 

0 

0 
Higher entry velocities 

The radiance of high temperature gases  is a complex phenomena and, 

although the basic fundamentals have been studied theoretically in some depth, 

its prediction depends to a considerable degree on approximating assumptions. 

In considering the contribution of radiative t ransport  processes  to the heat 

t ransfer  experienced by a space vehicle, a distinction can be made between 

the  equilibrium radiation originating in the shock-processed gas, which 

after passing through the bow wave has relaxed to its thermochemical 

equilibrium, and the non-equilibrium radiation, which is emitted f rom the 

shock front in which the imparted energy has not been distributed among 

the various degrees of freedom. Non-equilibrium radiation is relatively 

m o r e  pronounced at high altitudes where, because of the low collision rate ,  

long flow times are necessary for  the gas  to reach its equilibrium state. 

Under these circumstances gas molecules will acquire high translational 

energies  and can become thermally excited at effective temperatures  higher 

1 
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I s  than the equilibrium value. 

l e s s  well understoodthanthe. emission f rom high temperature gas in thermal  

equilibrium. It is natural, therefore, to seek experimental techniques for 

determining the actual radiance f rom which the radiant heat t ransfer  to the 

surface of the vehicle can b e  deduced. 

The emission f rom such a shock layer i s  even 

For  these purposes the shock tube provides a means for obtaining a 

sample of high temperature gas representing in composition the atmosphere 

of interest  and simulating the thermodynamic state corresponding to im-  

portant entry conditions. 

Simulation of the conditions corresponding to the hypervelocity en- 

vironment requires  incident shock velocities a s  shown in Fig. 1. 

instance, the thermodynamic state of the gas at the stagnation point of a 

blunt model in the shock tube flow behind an incident shock wave moving at  

29,000 f t / s ec  i s  equivalent to  flight stagnation conditions at  a speed of 

40,000 f t /sec.  

For  

Producing such high shock velocities i s  not in itself sufficient since 

it must be demonstrated that the properties of the gas sample a r e  uniform 

and that the flow i s  of sufficient duration t o  allow the formation of quasi- 

steady flow around the model and to  be compatible with the response t ime 

of the instrumentation. 

The purpose of this paper i s  to outline experimental techniques used 

fo r  studies of equilibrium and non-equilibrium radiative properties of high 

temperature  gases  produced in a shock tube. 

temperatures  of interest ,  the UV contribution, extending into the vacuum UV 

region of the spectrum, will constitute a large portion of the total radiation. 

F o r  this reason a new technique of measuring this radiation has been de-  

veloped and will  be described in detail. 

Because of the relatively high 

2 
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11. EXPERIMENTAL FACILITY 

In the study of radiative properties of high temperature  gases  r ep re -  

senting anticipated planetary atmospheres one is confronted with the problem 

of producing uniform samples of the gas at the appropriate temperature and 

pressure  for a sufficient duration consistent with the response character is t ics  

of the radiation sensors.  

long enough to allow the formation of steady The 

simulation of conditions corresponding to hypervelocity entry has  become 

possible with the development of the arc-heated shock tube ( 1 ) .  

experimental facility, employed at the GE Space Sciences Laboratory, is 

shown in Fig. 2. 

dr iver  gas  remains isolated by means of a metal  diaphragm from the test 

gas  in  the low pressure  driven section until the heating process of the light 

gas  in the dr iver  - an electrical discharge of capacitor stored energy - is 

completed. 

in Ref. (2). 

f t  long. 

dr iver .  

joules can be used when it is desired to obtain high shock velocities at a 

relatively high initial pressure of the test gas  in the driven tube. 

In the case  of model measurements this must be 

flow around the model. 

Such an 

It is essentially a conventional shock tube in which the 

The design features and mode of operation has been discussed 

The  dr iver  section has  a 6-inch internal diameter and is 31.5 

A capacitor bank rated at 304, 000 joules supplies the energy to the 

A second capacitor bank with a total stored energy of 768,000 

3 
With the la rger  capacitor bank a dr iver  energy density of 550 joules/cm 

produced incident shock wave velocities in excess of 44, 000 f t /sec.  

ca se  the state of the gas  in the stagnation region of a blunt model corresponds 

approximately to  stagnation conditions at 60, 000 f t /  sec. flight velocity. 

The  achievement of such high shock velocities is by itself of little u se  unless 

it is followed by a reasonable time of uniform flow of the test gas. 

severa l  auxiliary measurements the duration of the uniform flow behind the 

incident shock wave moving with 44,000 f t / s ec  velocity was found to be about 

10 psec .  with the end of the test time sharply defined. 

velocities the test t ime is correspondingly langer. 

In this 

Using 

At lower shock 

3 



To as su re  fu l l  validity of the data during each experimental run, the 

tes t  t ime is precisely determined by the methods described in Ref. (3) .  

Fig .  3 shows a photograph of the t e s t  section of the driven tube together with 

some of the instrumentation used in the radiation studies; also shown a r e  

several  instrumentation techniques employed in the determination of shock 

tube performance and tes t  gas flow quality. 

4 



111. SHOCK TUBE PERFORMANCE 

Signals f rom a se r i e s  of photomultipliers located at  various stations 

along the shock tube, a s  shown in Fig. 4, a r e  used to measure the shock 

wave velocity a s  a function of distance f rom the diaphragm. 

knowledge of the shock wave velocity and the initial conditions of the gas 

in the driven tube (initial shock tube pressure  i s  measured with a McLeod 

gage) all other equilibrium properties such a s  densities and temperatures  

behind the incident shock wave and at the stagnation point of the blunt model 

can be deduced. 

F rom the 

The most useful techniques for  measuring tes t  t ime and assessing the 

quality of the tes t  flow a r e  dependent on observing the radiant emission 

f r o m  the gas behind the incident shock wave and f romthef lowin  the stagnation 

region of the model. Several techniques of this type a r e  indicated in Fig.  4. 

Since the emission is a strong function of temperature,  the temporal quality 

of the flow and its duration can be deduced f rom the steadiness of the emitted 

radiation and the spatial quality f rom the image converter photographs. 

. 
5 
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IV. TOTAL RADIATION MEASUREMENTS 

The study of high temperature g a s  radiation requires  a measuring 

technique which is able to measure total radiance, integrated over the whole 

wavelength spectrum. All photo -emissive devices, such as photomultipliers 

and phototubes, a r e  sensitive only over a limited range of wavelength. 

thin film resistance thermometer gage (4) of the type widely used in shock 

tubes and shock tunnels for measuring convective heat t ransfer  offers suitable 

sensitivity and fast response, 

of i t s  surface reflectivity which is a function of the surface conditions, the wave- 

length of the incident radiation and the incident angle. 

A 

However, a difficulty a r i s e s  in the determination 

The gage selected ( 5 )  draws on the black body principle for i t s  geometric 

shape as i s  shown schematically in F ig .  5. 

cylindrical body with the entrance sli t  set off-axis. 

coated with a thin film of platinum which serves  as a fast response resis tance 

thermometer.  

absorbed by the platinum film and partially reflected. 

geometry the photons w i l l  undergo several  reflections before they escape back 

through the entrance slit. However, due to a finite absorption on each incidence, 

less than 570 of the energy entering the cavity gage w i l l  escape i f  the absorptivity 

of the platinum f i lm is above 3070. 

dependent on the film thickness which should be made small relative to the 

character is t ic  thermal  diffusion depth of the film material .  

the f i lm must be made opaque to the incident radiation since its function is to 

absorb  the energy. 

The gage i s  made in the f o r m  of a 

The inter ior  of the gage is 

The radiant energy which enters  through the sl i t  is partially 

Because of the chosen 

The fast  thermal response of the gage is  

At the same time 

The thin film resistance thermometer ,  the sensor of the cavity gage, is 

operated at essentially constant current  in a circuit also shown in Fig.  5. 

Each lead is connected through a 1500 ohm res i s tor  to a d ry  cel l  battery pack. 

The gage leads a r e  connected to the inputs of a differential amplifier in order  

to  reject  noise pick-up in the gage circuit. 

A photograph of the complete gage is shown in Fig.  6, The gage  is 

All composed of four quartz cylindrical elements and circular  end pieces. 

6 
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internal surfaces a r e  coated with the thin film, and each section of the gage 

i s  connected in a ser ies  circuit. 

The temperature and density level of the gas under study can cause a 

wide variation in the spectral  concentration of the emitted radiation. 

F ig .  7 a r e  shown two theoretical spectral  distributions of air radiance, one 

for air a t  7000°K and 1 a t m  (6)  and the other a t  14, OOOOK and the same 

p res su re  (7). 

tributions f rom molecular bands in the UV, visible and IR range. 

emission is expected below 1800A due to the limitations of the black body 

radiation. 

bound-bound transitions dominate the emission. 

most  of the radiation comes from the vacuum UV part  of the spectrum. 

In 

The spectrum at  the lower temperature contains mostly con- 

Very little 
0 

At the higher temperature,  however, f r ee  -bound, free -free and 

It can also be noticed that 

All mater ia ls  normally used for windows in shock tubes have a 

distinct short wavelength transmission cut-off. 

Fig. 7 occurs  a t  wavelengths longer than much of the line and continuum 

radiation of interest  in high temperature gas radiance studies. 

This cut-off, a s  shown in 

Two experimental configurations of the cavity gage system with 

windows were employed. In the f i rs t  configuration, the measurements a r e  

made of radiation emitted from gas processed by the incident shock wave. 

This  arrangement is shown in Fig.  8. 

collimating slits viewing only a narrow layer of the gas ac ross  the shock tube. 

In all recent investigations a fused silica quartz window separated the gage 

from the radiating gas. Because of the limited temperatures and densities 

which can be produced in the incident shock flow a t  a given initial shock tube 

p r e s s u r e  with the available energy of the dr iver ,  the gas radiance a t  tem- 

pera tures  in the range of 12,000 - 16,000 K w a s  measured using the stagna- 

tion region gas ahead of a hemispherical model a s  the test  gas sample. This 

arrangement  of the total radiation cavity gage inside the model is a lso shown 

in Fig. 8. 

w a s  used a t  the stagnation point of the model. 

from the window with i t s  entrance sli t  parallel  to the window aperature.  

The gage w a s  located behind a set  of 

0 

A rectangular shaped window 0. 1 in. by 0.5 in. and 1 mm thick 

The gage itself is located away 

Thus, 

7 
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the gage senses only radiation from a region of the shock layer  close to the 

axis of the model. 

Durink initial operation of the gage, evidence of photoemission f r o m  

the platinum film was observed, 

to a pressure  of approximately 3 microns,  the photoelectric effect w a s  strong 

enough to produce partial  short-circuiting of the gage. A few runs were made 

with a glass window under the same flow conditions with no evidence of the 

photoelectric effect, indicating that the photons with energy corresponding to 

a wavelength smaller  than 3500 A a r e  required to cause the photoemission. 

To eliminate this effect, the gage was filled with pure nitrogen a t  1 atm. 

pressure.  

electrons,  causing a space charge to develop close to the surface of the gage 

which inhibited any further electron emission within a fraction of a microsecond. 

Nitrogen gas was chosen because of i ts  large cross-section fo r  collision with 

electrons. 

During tes t s  in which the gage was evacuated 

0 

The presence of nitrogen gas reduced the mean f r e e  path of the 

A typical t race  obtained with a L iF  window is shown in Fig.  9. 

is satisfactory behind sapphire and quartz windows. 

However, for studies of vacuum UV radiation, N i s  not suitable, because 2 
of i ts  photo-absorption characterist ics.  In this case,  the choice i s  limited to 

r a r e  gases, with helium displaying the most desirable optical properties ( see  

Fig. 7). The ability of the model gas to suppress the photoelectric effect  w a s  

evaluated using a hemispherical model with a LiF window. As a f i r s t  choice, 

argon a t  2 a tm pressure  was used. 

run  is shown in the lower t race  of Fig.  9. 

effect which causes  the signal to become negative for the duration of the tes t  

f low is evident. 

model filled with pure nitrogen found previously to suppress the photoelectric 

effect is shown in the upper trace. 

the electron emission can be explained by referr ing to Fig .  10 where electron 

collision cross-section of several gases i s  plotted a s  a function of electron 

velocity. Although argon and krypton display c r o s s  -sections for electrons 

comparable to nitrogen, with electron energy above 4 ev, both noble gases 

are practically transparent to electrons with energies in the vicinity of about 

Use of pure N 2 

A cavity gage signal obtained f r o m  this 

The presence of a photoelectric 

For  comparison a t race  of the cavity gage output with the 

The inability of argon to adequately reduce 

8 
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of the heavier r a r e  gases. 

large c r o s s  -sections fo r  energetic electrons,  and He, with a reasonable 

effectiveness for  scattering slow electrons,  was tr ied next in the model. 

typical t race  of the cavity gage response with the L iF  window model is  shown 

in Fig.  11. 

t r ace  is  typical of a thin film thermometer response. 

This transparency, known as the Ramsauer-Townsend effect  is typical 

A gas mixture with equal proportions of K r ,  having 

A 

It can be seen that the photoelectric effect is absent and the signal 

As previously mentioned, a windowless gage system is required for 

sensing vacuum UV radiation. 

necessary  to counteract the photoelectric effect, a problem a r i s e s  of how to 

contain this gas  inside the model pr ior  to the a r r iva l  of the incident shock 

wave and prevent i t  f rom mixing with the test  gas. 

earlier indicated that the gas density inside the model must be considerably 

higher than the shock tube initial p ressure  fo r  an effective restriction of the 

movement of photoelectrons. 

therefore developed in which a stretched latex membrance separates  the inside 

Since a g a s  mixture within the model is 

The resul ts  obtained 

A windowless model as shown in Fig.  12 w a s  

* g a s  f rom the outside. The membrane bursts  and uncovers the entrance slit 

when a pulse of current  is passed through a .002 in. wire  located along the 

rectangular entrance slit and in contact with the latex membrane. No com- 

bustion of the membrane takes place but the rapid heating weakens the latex 

to a point where i t  t ea r s  under i ts  own internal stress. 

uncovering of the entrance sli t  of the model takes approximately 15 psec. 

Depending on the gage gas  pressure ,  a delay of about 140 gsec .  between the 

cur ren t  pulse and full opening of the sl i t  w a s  observed. 

to be repeatable within t l0lrsec. By using a delayed t r igger  signal f rom an 

upstream station the full opening process  can be scheduled to be completed 

approximately 10 psec;. p r ior to the  a r r iva l  of the incident shock wave at the 

model station. Analysis of the inflow process  in the case  when the internal 

p r e s s u r e  is very  much lower than the stagnation p res su re  showed that an 

appreciable difficulty w i l l  exist in accounting properly for  the absorption 

character is t ics  of the inflowing gas.  

the stagnation pressure  this effect w i l l  ideally be eliminated. 

The process  of the 

This delay w a s  found 

- 

If the internal p re s su re  is set  equal to 

9 
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At the instant when the latex membrane breaks,  the gage gas issues  

Since the through the entrance slit into the stationary gas  in the shock tube. 

breaking point of the membrane is timed to occur approximately lop sec. 

before the incident shock arr ives  a t  the model only a small  amount of the gage 

gas is able to escape and its penetration is limited to only a few centimeters 

upstream of the model. 

f i r s t  1-2 p sec. af ter  the incident shock a r r ives  at the model which coincides 

with the time taken by the blunt body flow formation. 

face between the tes t  gas and the gage gas  i s  stationary, the diffusion of the 

gases  ac ross  it was estimated to be negligible during the time corresponding 

to the tes t  gas flow (20-30 psec , ) .  

signal obtained f rom the windowless model is shown in Fig. 12. 

the interior of the model was filled with a mixture of equal par t s  of He and Kr.  

This gas is subsequently swept downstream during the 

Assuming that the inter-  

A typical oscilloscope t r ace  of the gage 

In this case  

Photographs of the shock layer  ahead of the blunt model were obtained 

by means of an image converter camera.  

the three consecutive f rames  taken 5 p  sec. apart. 

same figure show the camera monitor and photomultiplier signals. 

multiplier looks through a window in the sidewall of the shock tube and is 

focused just ahead of the model stagnation point. 

camera  f rame w a s  obtained during the flow formation as indicated by the 

camera  monitor. The next two frames were taken during the steady flow 

These a r e  shown in Fig. 13, with 

The lower t r aces  in the 

The photo- 

The f i r s t  image converter 

corresponding to a uniform shock layer  radiance and constant stand off d i s -  

tance. 

within the expected time with the end of tes t  gas flow clearly visible, and that 

the shape of the bow'shock wave w a s  not perturbed by the presence of the 

windowless slit a t  the stagnation point of the model. 

These photographs also indicate that a uniform flow was achieved 

Experimental data obtained with the total radiation cavity gage behind 

LiF and quartz windows in a hemispherical model is shown in Fig,  14. 

f ew data obtained with the windowless model a r e  a lso included. 

indicate an important contribution to the total radiation f rom the vacuum UV 

region of the spectrum below the L i F  window cut-off. 

A 

These resul ts  

10 
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V. MEASUREMENTS OF NON-EQUILIBRIUM GAS RADIANCE 

The non -equilibrium radiation can be measured by observing the 

passage of the incident shock. 

is extremely short, the required high spatial resolution of the radiation sensor  

precludes the use of the total radiation cavity gage. 

multipliers with their high sensitivity together with an appropriate dispersing 

optical system can satisfactorily be used in such a study, producing not only 

the non-equilibrium radiation data but a lso the spectral  distribution of the 

equilibrium radiance. 

Since the extent of the non-equilibrium layer 

It w a s  found that photo- 

Fig. 15 shows the general arrangement of the shock tube, the spectro-  

photometer and the optical system associated with the incident shock radiation 

studies. The measurements were made through a quartz window mounted in 

the sidewall of the tube at a station located at a distance of L/D = 51.5 f rom 

the diaphragm. 

w a s  placed directly opposite the observation window in order  to eliminate the 

effects of internal shock tube reflections. 

A light t rap in the form of a blackened cylindrical cavity 

To measure spectral  radiance, a Jarrel l -Ash Co. f /6 .3  plane grating 

spectrograph with a dispersion of approximately 40 A/mm w a s  equipped with 

s ix  photomultipliers mounted in the exit focal plane. 

the individual detectors,  an arrangement as shown in Fig. 15 w a s  necessary 

so that the radiation in adjacent spectral  intervals could be measured 

simultaneously. 

giving 200A of spectral  coverage o r  a total of 1000 A fo r  the five channels, 

w a s  used at wavelengths above 4000 A. 

located a t  the other end of the fibre bundles. F o r  the ultraviolet region of 

the spectrum a quartz lens reimaged a 255A wide section of the spectrum 

f r o m  the focal plane of the spectrophotometer directly on the photocathode of 

a 1P28 photomultiplier, 

3200A w a s  made using a standard tungsten ribbon lamp which w a s  calibrated 

by the Bureau of Standards. 

wavelengths below 3200A w a s  made with the use of a pyrometric carbon arc .  

0 

Because of the size of 

A fibre optics package, with each bundle entrance aperture  
0 0 

0 
Five 1P28 photomultipliers were 

0 

The calibration of the complete optical system above 
0 

The calibration of the spectrophotometer at 
0 

11 
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The a r c  w a s  assumed to emit as  a grey body a t  a t rue temperature of 3800 K, 

with an emissivity of 0.97 (8). 

which the ribbon filament tungsten lamp could also be used showed good 

agreement between the two methods. 

A check of calibration a t  a wavelength a t  

Typical t races  obtained from two of the channels of the spectrophoto- 

The spectral  distribution of the integrated non- meter  a r e  shown in Fig.  16. 

equilibrium radiation is shown in Fig. 17. 

of the total non-equilibrium radiation i t  i s  necessary to integrate over the 

whole wavelength region. 

In order  to obtain the magnitude 

12 
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VI. CONCLUDING REMARKS 

A method for measuring total emission f rom a high temperature gas 

that includes contributions in the vacuum UV region of the wavelength 

spectrum has been developed and is being employed in the study of the air 

radiance. The total radiation cavity gage, which has  been previously used 

behind windows in the model and shock tube sidewall, w a s  found to be 

adaptable to a windowless model. 

A technique for  spectral  measurements of equilibrium and non -equilibrium 

radiation f rom incident shock waves in the shock tube w a s  described and i t s  

application demonstrated. 

13 



VII. ACKNOWLEDGEMENTS 

This work was supported by the Jet  Propulsion Laboratory, NASA- 

Office of Advance Research and Technology and by the General Electric 

Contractors Independent Research Program. 

the contribution of Mr. H. W. Bousman to the development of the windowless 

model, and Messrs.  F. McMenamin and R. Emsley, who operated the facility. 

The authors wish to acknowledge 

14 



t -  VIII. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

REFERENCES 

Warren, W. R., Rogers, D. A., and Harr i s ,  C. J.; The Development 
of an  Electrically Heated Shock Driven Tes t  Facil i ty;  GE TIS R62SD37; 
a l so  Proc.  2nd Symp. on Hyp. Tech. , University of Denver, Denver, 
Colo., March 1962. 

Gruszczynski, J. S. ,  Warren, W. R . ,  J r . ,  and Diaconis, N. S. ;  
Laboratory Simulation of Hypervelocity Heat Transfer  Problem During 
Planetary Entry; GE TIS R64SD73; also Proc. XVth International 
Astronautical Congress,  Sept. 7-12, 1964, W a r s a w ,  Poland. 

Gruszczynski, J. S. and Rogers,  D. A. ; Shock Tube Instrumentation 
Techniques fo r  Study of Hypervelocity Entry Problems;  GE TIS R64SD67; 
Sept., 1964. 

Vidal, R. J. ; Model Instrumentation Techniques for Heat Transfer  and 
Force  Measurements in  a Hypersonic Shock Tunnel; Cornel1 Aero. Lab. 
Report No. AD-917-A-1, Feb. 1956. 

Gruszczynski, J. S., Harr is ,  C. J . ,  Rogers,  D. A. and Warren, W. R.; 
Fast Response Total Radiation Gage for  Measurement of Radiation 
Emission f rom High Temperature Gas;  GE TIS R63SDl1, Jan. 1963. 

Nardone, M. C. ,  Breene, R. G., Zeldin, S. S. and Riethof, T. R. ;  
Radiance of Species in High Temperature  Air ;  GE TIS R63SD3, June 1963. 

Biberman, L. M., Vorob'ev, V. S. , Norman, G. E. and Iakubov, I. T.;  
Radiation Heating in Hypersonic Flow; Kosmich. Issled. , Vol. 2, No. 3, 
pp. 441-454, 1964. 

Null, M. R. and Lozier, W. W. ; The Carbon Arc  as Radiation Standard, 
Temperature ,  Its Measurement and Control in Science and Industry; 
Reinhold Publishing Co., New York 1962. 

15 



' .  

i 
I 

0 
v) 

0 * 

0 
rr) 

0 cu 

0 
0- 

Q) 
k 
0) c 
0 
l.2 
E F 
9 
d 
k 

0 
d 
h 
k 
c, 

c, 

.rl 

6 
k 
0 w 
m 
Q) 

.rl 
c, 
k 
Q) a 
0 

L 
m 
ld a 
E 

2 

5 
k 
.rl 

A 
5 

8 

!s 
!3 

? 
2 

+I 

.rl 
d 

.rl 
c, 
ld 
E 

h a 
0 
F9 

E 
5 

F9 

c, 

4 

. 
4 

Q) 
k 

% 
.rl 

6( 

c 

16 



.- 

.. 

Ei 

8 

w 
0 
a 

d 
0 
.d 

E: 
0 

cd 
.A 
c, 

c, 

3 
E 
1 
k 

w 
0 

id 
U s . 
N 
Q) 
k 

& 
.d 

6( 

17 



i, 
0 

A- 

I :  



. 

! -  

z 
0 - 
(3 
W 

d a 

E 

s 
9 
k 
c, 

H 

0 
A 
v3 

lz 
rn 

d 

19 



t '. 
i 
I 

THIN PLATINUM FILM 

4 

QUARTZ 

FILM INTHE CAVITY GAGE 

Figure 5. Total Radiation Cavity Gage. Geometry of Cylindrical Section 
and Schematic of Gage Electric Circuit 

20 



F i g u r e  6. Total  Radiat ion Cavity Gage 
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Figure  8. Total Radiation Cavity Gage System Used for Radiation Measurements. 
Upper Drawing Shows Stagnation Flow Model Configuration. 
Draiving Indicates Side W a l l  Arrangement. 
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